

Review of Trusted Cloud Computing Platform Security

 S.R.Pojage Dr.M.A.Pund

Dept of Computer Science and Engineering Dept of Computer Science and Engineering

 PRMITR Amravati PRMITR Amravati

 India India
 sagarpojage@gmail.com mapund@mitra.ac.in

Abstract — Cloud computing infrastructures enable

companies to cut costs by outsourcing computations on-

demand. Security and privacy are two prime barriers to

adoption of the cloud computing. Distributed Trusted

Computing Platform (DTCP) model can improve the

cloud computing security and will not bring much

complexity to users. To address this problem on

Infrastructure-as-a-Service model, a trusted cloud

computing platform model has been proposed to

provide a closed box execution environment that

guarantees confidential execution of guest virtual

machines. In this paper, we deal with different

infrastructure level attacks and through the use of

trusted cloud computing platform we provide a

distributed solution to implement it.

Keywords—cloud computing, cloud security,

IaaSAttack, trusted cloud computing platform

1 INTRODUCTION

A Trusted Cloud computing

 Cloud computing is an internet-based computing
technology, where shared resources such as software,
platform, storage and information are provided to
customers on demand. Cloud computing is a computing
platform for sharing resources that include infrastructures,
software, applications, and business processes. Trusted
computing is a technology developed and promoted by the
Trusted Computing Group [7]. The term is taken from the
field of trusted systems and has a specialized meaning.
With Trusted Computing, the computer will consistently
behave in expected ways, and those behaviors will be
enforced by computer hardware and software. Enforcing
this behavior is achieved by loading the hardware with a
unique encryption key inaccessible to the rest of the system.

B Cloud Security

Cloud computing and storage solutions provide
users and enterprises with various capabilities to store and

process their data in third-party data centers. Organizations
use the Cloud in a variety of different service models SaaS,
PaaS, and IaaS and deployment models Private, Public,
Hybrid, and Community).There are a number of security
issues/concerns associated with cloud computing but these
issues fall into two broad categories: security issues faced
by cloud providers organizations providing software,
platform or infrastructure-as-a-service via the cloud and
security issues faced by their customers companies or
organizations who host applications or store data on the
cloud. The responsibility goes both ways, however: the
provider must ensure that their infrastructure is secure and
that their clients’ data and applications are protected while
the user must take measures to fortify their application and
use strong passwords and authentication measures.

Figure Cloud deployment model

C Distributed Trusted Cloud Computing Platform

 Trusted cloud computing platform (TCCP) that
provides a closed box execution environment by extending
the concept of trusted platform to an entire IaaS backend.
The TCCP guarantees the confidentiality and the integrity
of a user’s VM, and allows a user to determine whether or
not the IaaS enforces security. TCCP does the job of
governing all trusted nodes on one entity only, instead the
job is distributed among several entities, each managing a
cluster, such that one single entity does become the failure
of the complete system, and the system can not function
smoothly. Distributed trusted cloud computing platform
overcome TCCP problem.

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 167

IJSER © 2016
http://www.ijser.org

IJSER

mailto:sagarpojage@gmail.com

2 .LITERATURE REVIEW

IT companies can greatly reduce costs of data
management and data manipulation by loading such
responsibilities on the shoulders of cloud computing
services. Cloud computing features like agility, multi-
tenancy, pervasiveness, elasticity and pay-per-use, make
cloud computing an attractive platform to handle data of
clients and relieve the client from such concerns. Enterprise
level spending for on-premise solutions will descend, as
cloud computing minimizes the need for licenses, software
and hardware. In-spite of providing appreciable features, it
has been found that clients sometimes feel reluctant to hand
-over confidential data to the cloud providers. Data security
is their major area of concern. Solidity and reliability are
the characters a client is looking forward in a cloud
provider. Hence ensuring data security is an indispensable
feature a cloud provider must guarantee.

A Terra Architecture

 It allows applications with a wide range of
security requirements to run simultaneously on hardware.
Applications on Terra enjoy the semantics of running on a
separate, dedicated, tamper-resistant hardware platform,
while retaining the ability to run with normal applications
side-by-side on a general-purpose computing platform.
These platforms can provide assurance of whether the VM
is running on a single host, trusted by the third party. But
many providers own data centers, where several machines
are operating and a customer’s VM can be dynamically
assigned to any one of them. This complication and
incomprehensibility resulting due to obscure backend of
cloud service provider makes traditional platforms
vulnerable to few dangers. Unfortunately, architecture like
Terra has no answer to it.

To address these problems, some systems resort to
specialized closed platforms, e.g. cellular phones, game
consoles, and ATMs. Closed platforms give developers
complete control over the structure and complexity of the
software stack, thus they can tailor it to their security
requirements. These platforms can provide hardware
tamper resistance to ensure that the platform’s software
stack is not easily modified to make it misbehave.
Embedded cryptographic keys permit these systems to
identify their own software to remote systems, allowing
them to make assumptions about the software’s behavior.
These capabilities allow closed platforms to offer higher
assurance and address a wider range of threat models than
current general-purpose platforms. The security benefits of
starting from scratch on a “closed box” special-purpose
platform can be significant. However, for most applications
these benefits do not outweigh the advantages of general
purpose open platforms that run many applications
including a huge body of existing code and that take
advantage of commodity hardware (CPU, storage,
peripherals, etc.) that offers rich functionality and

significant economies of scale. In this work, we describe a
software architecture that attempts to resolve the conflict
between these two approaches by supporting the
capabilities of closed platforms on general-purpose
computing hardware through a combination of hardware
and operating system mechanisms.

In this architecture, called Terra, provides a
simple and flexible programming model that allows
application designers to build secure applications in the
same way they would on a dedicated closed platform. At
the same time, Terra supports today’s operating systems
and applications. Terra realizes this union with a trusted

virtual machine monitor (TVMM), that is, a high-assurance
virtual machine monitor that partitions a single tamper-
resistant, general-purpose platform into multiple isolated
virtual machines. Using a TVMM, existing applications
and operating systems can each run in a standard virtual
machine (“open-box VM”) that provides the semantics of
today’s open platforms. Applications can also run in their
own closed-box virtual machines (“closed-box VMs”) that
provide the functionality of running on a dedicated closed
platform. The TVMM protects the privacy and integrity of
a closed-box VM’s contents. Applications running inside a
closed-box VM can tailor their software stacks to their
security requirements. Finally, the TVMM allows
applications to cryptographically authenticate the running
software stack to remote parties in a process called
attestation.Both open- and closed-box VMs provide a raw
hardware interface that is practically identical to the
underlying physical machine. Thus, VMs can run all
existing commodity software that would normally run on
the hardware. Because a hardware-level interface is
provided, application designers can completely specify
what software runs inside a VM, allowing them to tailor an
application’s software stack to its security, compatibility,
and performance needs. Closed-box VMs are isolated from
the rest of the platform. Through hardware memory
protection and cryptographic protection of storage, their
contents are protected from observation and tampering by
the platform owner and malicious parties.

At the heart of Terra is a virtual machine monitor
(VMM). Like any VMM, Terra virtualizes machine
resources to allow many virtual machines (VMs) to run
independently and concurrently. Terra also provides
additional security capabilities including acting as a trusted
party to authenticate the software running in a VM to
remote parties. Because of this property we refer to it as a
“trusted VMM” (TVMM). At a high level, the TVMM
exports two VM abstractions. Open box VMs provide the
semantics of today’s open platforms. These can run
commodity operating systems and provide the appearance
of today’s general-purpose platforms. Closed-box VMs
implement the semantics of a closed-box platform. Their
content cannot be inspected or manipulated by the platform
owner. Thus, their content is secure, neither inspectable nor
modifiable by any but those who constructed it, who can
explicitly provide themselves access.

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 168

IJSER © 2016
http://www.ijser.org

IJSER

 Terra provides a raw virtual machine as the

development target for applications, lending great
flexibility to application designers. Applications can be
designed from the (virtual) hardware up, using the
operating systems that best suit their security, portability,
and efficiency needs. Operating systems that run in VMs
may be as simple as a bootstrap loader plus application
code or as complex as a commodity operating system that
runs only one application. Applications can completely
tailor the OS to their security needs. Instead of running
single closed-box applications, a closed-box VM might run
a special trusted OS with a selection of applications
designed specifically for it, thus providing something
similar to the NGSCB model. VMs on a single physical
machine communicate with one another over virtualized
standard I/O interfaces such as NICs, serial ports, etc. The
VMM can also multiplex the display and input devices.
Thus, from the user’s perspective, a closed-box VM may
take on the appearance of a normal application, a virtual
network appliance, or a virtual device (e.g. a USB device).
The responsibility for configuring how these VMs are
granted storage and memory, connected, started, stopped,
etc. is delegated to a special management VM. The TVMM
offers the management VM a basic interface to carry out
these tasks. Where the TVMM provides resource
management mechanisms, the management VM decides
policy, providing a higher-level interface to users and other
VMs.

B Trusted Platform Module (TPM)

Hardware virtualization has enjoyed a rapid
resurgence in recent years as a way to reduce the total cost
of ownership of computer systems [5]. This resurgence is
specially apparent in corporate data centers such as web
hosting centers, where sharing each hardware platform
among multiple software workloads leads to improved
utilization and reduced operating expenses. However, along
with these cost benefits come added security concerns.
Workloads that share the same platform
must often be kept separate for a multitude of reasons. For
example, government regulations may require an
investment bank to maintain a strict separation between its
market analysis and security underwriting departments,
including their respective information processing facilities.
Similarly, commercial interests may dictate that the web
sites of competing businesses not have access to each
other’s data. In addition, concerns about malicious software
subverting normal operations become specially acute in
these shared hardware environments. For example, a
remote client of a medical services site would like to
determine that the server is not running corrupted software
that will expose private information to a third party or
return wrong medical information. The increasing use of
virtualization thus gives rise to stringent security
requirements in the areas of software integrity and
workload isolation.

The combination of a hardware-based root of trust
such as the Trusted Platform Module (TPM), and a virtual
machine-based system such as Xen VMware, or PHYP, is
exceedingly well suited to satisfying these security
requirements. Virtual machine monitors, or hypervisors,
are naturally good at isolating workloads from each other
because they mediate all access to physical resources by
virtual machines. A hardware root of trust is resistant to
software attacks and provides a basis for reasoning about
the integrity of all software running on a platform, from the
hypervisor itself to all operating systems and applications
running inside virtual machines. In particular, the TPM
enables remote attestation by digitally signing
cryptographic hashes of software components. In this
context, attestation means to affirm that some software or
hardware is genuine or correct. TPM chips are widely
deployed on laptop and desktop PCs, and are becoming
increasingly available on server-class machines such as the
IBM eServer x366 . Virtualizing the TPM is necessary to
make its capabilities available to all virtual machines
running on a platform.

Each virtual machine with need of TPM
functionality should be made to feel that it has access to its
own private TPM, even though there may be many more
virtual machines than physical TPMs on the system
(typically there is a single hardware TPM per platform). It
is thus necessary to create multiple virtual TPM instances,
each of which faithfully emulates the functions of hardware
TPM. However, virtualizing the TPM presents difficult
challenges because of the need to preserve its security
properties. The difficulty lies not in providing the low-level
TPM command set, but in properly supporting higher level
security concepts such as trust establishment. In particular,
it is necessary to extend the chain of trust from the physical
TPM to each virtual TPM via careful management of
signing keys and certificates. As a result, some application
and operating system software that relies on TPM
functionality needs to be made aware of semantic
differences between virtual and physical TPMs, so that
certificate chains can be correctly built and evaluated, and
trust chains correctly established and followed. An
additional challenge is the need to support migration of a
virtual TPM instance between hardware platforms when its
associated virtual machine migrates. The ability to suspend,
migrate, and resume virtual machines is an important
benefit of hardware virtualization. For the virtual TPM,
migration requires protecting the secrecy and integrity of
data stored in a virtual TPM instance during the transfer
between platforms, and re-establishing the chain of trust on
the new platform.

The TPM is a security specification defined by the

Trusted Computing Group. Its implementation is available
as a chip that is physically attached to a platform’s
motherboard and controlled by software running on the
system using well-defined commands. It provides
cryptographic operations such as asymmetric key

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 169

IJSER © 2016
http://www.ijser.org

IJSER

generation, decryption, encryption, signing and migration
of keys between TPMs, as well as random number
generation and hashing. It also provides secure storage for
small amounts of information such as cryptographic keys.
Because the TPM is implemented in hardware and presents
a carefully designed interface, it is resistant to software
attacks . Of particular interest is the Platform Configuration
Register (PCR) extension operation. PCRs are initialized at
power up and can only be modified by reset or extension.
The PCR extension function cryptographically updates a
PCR using the following function:
Extend (PCRN, value) = SHA1 (PCRN||value)

The cryptographic properties of the extension
operation state that it is infeasible to reach a certain PCR
state through two different sequences of values. SHA1
refers to the Secure Hash Algorithm standard [19]. The ||
operation represents a concatenation of two byte arrays.
PCR extensions are used during the platform boot process
and start within early-executed code in the Basic Input/
Output System (BIOS) that is referred to as the Core Root
of Trust for Measurement (CRTM).

Hash values of byte arrays representing code or

configuration data are calculated, or measured, and PCRs
are extended with these values. A final PCR value
represents this accumulation of a unique sequence of
measurements. Along with a sequential list of individual
measurements and applications’ names and information
about measured configuration data, PCR values are used to
decide whether a system can be trusted. A transitive trust
model is implemented that hands off the measuring from
the BIOS to the boot loader and finally to the operating
system. Procedures have also been developed for operating
systems to measure launched applications, scripts and
configuration files.

Besides the aforementioned cryptographic
operations it is possible to seal information against the state
of the TPM, where its state is represented through a subset
of PCRs. Sealed information is encrypted with a public key
and can only be decrypted if the selected PCRs are in the
exact state that they were at the time of sealing. There are a
number of signing keys associated with a TPM. Each TPM
can be identified by a unique built-in key, the Endorsement
Key (EK), which stands for the validity of the TPM [7].
The device manufacturer should provide a certificate for
the EK. Related to the EK are Attestation Identity Keys
(AIKs). An AIK is created by the TPM and linked to the
local platform through a certificate for that AIK. This
certificate is created and signed by a certificate authority
(CA). In particular, a privacy CA allows a platform to
present different AIKs to different remote parties, so that it
is impossible for these parties to determine that the AIKs
are coming from the same platform. AIKs are primarily
used during quote operations to provide a signature over a
subset of PCRs as well as a 160-bit nonce. Quotes are
delivered to remote parties to enable them to verify
properties of the platform.

VMMs [8], also known as hypervisors, allow
multiple operating systems to simultaneously run on one
machine.
A VMM is a software layer underneath the operating
system that meets two basic requirements:
• It provides a Virtual Machine (VM) abstraction that
models and emulates a physical machine.
• It provides isolation between virtual machines. The basic
responsibility of a VMM is to provide CPU time, memory
and interrupts to each VM.
 It needs to set up the page tables and memory management
unit of the CPU such that each VM runs in its own isolated
sandbox The hypervisor itself remains in full control over
the resources given to a VM. During the boot process of a
VMM, often an initial virtual machine is started that serves
as a management system for starting further virtual
machines. Depending on the fidelity of the emulation of a
physical machine, it may be necessary to make
modifications to an operating system for it to run on a
VMM. If modifications are required the environment is
said to be paravirtualized, otherwise the VMM is said to
provide a fully virtualized environment.

C Trusted Cloud Computing Platform (TCCP)

 Companies can greatly reduce IT costs by
offloading data and computation to cloud computing
services. Still, many companies are reluctant to do so,
mostly due to outstanding security concerns. One of the
most serious concerns is the possibility of confidentiality
violations. Either maliciously or accidentally, cloud
provider’s employees can tamper with or leak a company’s
data. Such actions can severely damage the reputation or
finances of a company. In order to prevent confidentiality
violations, cloud services’ customers might resort to
encryption. While encryption is effective in securing data
before it is stored at the provider, it cannot be applied in
services where data is to be computed, since the
unencrypted data must reside in the memory of the host
running the computation. In Infrastructure as a Service
(IaaS) cloud services such as Amazon’s EC2, the provider
hosts virtual machines (VMs) on behalf of its customers,
who can do arbitrary computations. In these systems,
anyone with privileged access to the host can read or
manipulate a customer’s data. Consequently, customers
cannot protect their VMs on their own. Cloud service
providers are making a substantial effort to secure their
systems, in order to minimize the threat of insider attacks,
and reinforce the confidence of customers. For example,
they protect and restrict access to the hardware facilities,
adopt stringent accountability and auditing procedures, and
minimize the number of staff who has access to critical
components of the infrastructure [8]. Nevertheless, insiders
that administer the software systems at the provider
backend ultimately still possess the technical means to
access customers’ VMs. Thus, there is a clear need for a
technical solution that guarantees the confidentiality and
integrity of computation, in a way that is verifiable by the

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 170

IJSER © 2016
http://www.ijser.org

IJSER

customers of the service Traditional trusted computing
platforms like Terra [4] take a compelling approach to this
problem. For example, Terra is able to prevent the owner of
a physical host from inspecting and interfering with a
computation. Terra also provides a remote attestation
capability that enables a remote party to determine upfront
whether the host can securely run the computation. This
mechanism reliably detects whether or not the host is
running a platform implementation that the remote party
trusts. These platforms can effectively secure a VM
running in a single host. However, many providers run data
centers comprising several hundreds of machines, and a
customer’s VM can be dynamically scheduled to run on
any one of them. This complexity and the opaqueness of
the provider backend create vulnerabilities that traditional
trusted platforms cannot address. A trusted cloud
computing platform (TCCP) for ensuring the
confidentiality and integrity of computations that are
outsourced to IaaS services. The TCCP provides the
abstraction of a closed box execution environment for a
customer’s VM, guaranteeing that no cloud provider’s
privileged administrator can inspect or tamper with its
content. Moreover, before requesting the service to launch
a VM, the TCCP allows a customer to reliably and
remotely determine whether the service backend is running
a trusted TCCP implementation. This capability extends the
notion of attestation to the entire service, and thus allows a
customer to verify if its computation will run securely.

Infrastructure as a Service

Today, myriads of cloud providers offer services
at various layers of the software stack. At lower layers,
Infrasructure as a Service (IaaS) providers such as
Amazon, Flexiscale, and GoGrid allow their customers to
have access to entire virtual machines (VMs) hosted by the
provider. A customer, and user of the system, is responsible
for providing the entire software stack running inside a
VM. At higher layers, Software as a Service (SaaS)
systems such as Google Apps offer complete online
applications than can be directly executed by their users.
The difficulty in guaranteeing the confidentiality of
computations increases for services sitting on higher layers
of the software stack, because services themselves provide
and run the software that directly manipulates customer’s
data (e.g., Google Docs). We focus on the lower layer IaaS
cloud providers where securing a customer’s VM is more
manageable.While very little detail is known about the
internal organization of commercial IaaS services, we
escribe (andbase our proposal on) Eucalyptus [6], an open
source IaaS platform that offers an interface similar to EC2
This system manages one or more clusters whose nodes run
a virtual machine monitor (typically Xen) to host
customers’ VMs. Eucalyptus comprehends a set of
components to manage the clusters. For simplicity, our
description aggregates all these components in a single
cloud manager (CM) that handles a single cluster From the

perspective of users, Eucalyptus provides a web service
interface to launch, manage, and terminate VMs. A VM is
launched from a virtual machine image (VMI) loaded from
the CM. Once a VM is launched, users can log in to it
using normal tools such asssh. Aside from the interface to
every user, the CM exports services that can be used to
perform administrative tasks such as adding and removing
VMIs or users. Xen supports live migration, allowing a
VM to shift its physical host while still running, in a way
that is transparent to the user. Migration can be useful for
resource consolidation or load balancing within the cluster.

Attack model

A sysadmin of the cloud provider that has
privileged control over the backend can perpetrate many
attacks in order to access the memory of a customer’s VM.
With root privileges at each machine, the sysadmin can
install or execute all sorts of software to perform an attack.
For example, if Xen is used at the backend, Xenaccess [7]
allows a sysadmin to run a user level process in Dom0 that
directly accesses the content of a VM’s memory at run
time. Furthermore, with physical access to the machine, a
sysadmin can perform more sophisticated attacks like cold
boot attacks and even tamper with the hardware. In current
IaaS providers, we can reasonably consider that no single
person accumulates all these privileges. Moreover,
providers already deploy stringent security devices,
restricted access control policies, and surveillance
mechanisms to protect the physical integrity of the
hardware. Thus, we assume that, by enforcing a security
perimeter, the provider itself can prevent attacks that
require physical access to the machines. Nevertheless,
sysadmins need privileged permissions at the cluster’s
machines in order to manage the software they run. Since
we do not precisely know the praxis of current IaaS
providers, we assume in our attack model that sysadmins
can login remotely to any machine with root privileges, at
any point in time. The only way a sysadmin would be able
to gain physical access to a node running a costumer’s VM
is by diverting this VM to a machine under her control,
located outside the IaaS’s security perimeter. Therefore, the
TCCP must be able to 1) confine the VM execution inside
the perimeter, and 2) guarantee that at any point a sysadmin
with root privi- leges remotely logged to a machine hosting
a VM cannot access its memory

Trusted Computing

The Trusted Computing Group (TCG) [7]
proposed a set of hardware and software technologies to
enable the construction of trusted platforms. In particular,
the TCG proposed a standard for the design of the trusted

platform module (TPM) chip that is now bundled with
commodity hardware. The TPM contains an endorsement
private key (EK) that uniquely identifies the TPM (thus, the
physical host), and some cryptographic functions that

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 171

IJSER © 2016
http://www.ijser.org

IJSER

cannot be modified. The respective manufacturers sign the
corresponding public key to guarantee the correctness of
the chip and validity of the key. Trusted platforms [1, 4, 5,
9] leverage the features of TPM chips to enable remote

attestation. This mechanism works as follows. At boot
time, the host computes a measurement listML consisting
of a sequence of hashes of the software involved in the
boot sequence, namely the BIOS, the boot loader, and the
software implementing the platform. The ML is securely
stored inside the host’s TPM. To attest to the platform, a
remote party challenges the platform running at the host
with a nonce nU. The platform asks the local TPM to create
a message containing both the ML and the nU, encrypted
with the TPM’s private EK. The host sends the message
back to the remote party who can decrypt it using the EK’s

3. CONCLUSION

To improve trusted cloud computing privacy, security,
sensitivity and storage efficiency of data and computation
are major obstacles for organization willing to adopt the
services of cloud computing. The design of Distributed
Trusted Cloud Computing Platform (DTCCP) which acts
as solution to suggest the cloud user that the platform on
which they wish to run their computations is indeed trusted
or not. It allows IaaS services such as Amazon EC2 to
provide an enclosed execution environment for its users.
DTCCP grants private execution environment to the guest
VMs, and enables the users to attest to the IaaS provider
well in advance, if at all the provider can provide a secure
platform for their VM execution. Also DTCCP model does
not implement the job of governing all trusted nodes on
one entity only, instead the job is distributed among several
entities, each managing a cluster, such that one single
entity become fail still entire system carried out work
smoothly.

REFERENCES:
[1] N. Santos, K.P. Gummadi, R. Rodrigues, “Towards

Trusted Cloud Computing". In Proc. of the 1s USENIX
Workshop on Hot Topics in Cloud Computing,
Berkeley, CA, USA, 2009.

[2] Louis Columbus, “Roundup of Cloud Computing

Forecasts and Market Estimates, 2012”, January 17,
2012. [Online]. Available:
http://softwarestrategiesblo
g.com/2012/01/17/roundup-of-cloud-computing-
forecasts-and-market-estimates-2012/

[3] B.D Payne,M.Carbone ,and W Lee ,”Secure and
Flexible Monitoring of Virtual Machines, “ In Proc.
Of ACSAC07,2007

[4] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, D.

Boneh,“Terra: A Virtual Machine-Based Platform for
Trusted Computing”. In Pro c. of SOSP’03, 2003.

[5] Hamid Banirostam, Alireza Hedayati, Ahmad Khadem

Zadeh, Elham Shamsinezha d, “A Trust Based
Approach for Increasing Security in Cloud Computing
Infrastructure”. In UKSim 15th International
Conference on Computer Modelling and Simulation,
2013.

[6] F. John Krautheim, Dhan anjay S. Phatak, and Alan T.

Sherman, “Introducing the Trusted Virtual
Environment Module: A New Mechanism for Rooting
Trust in Cloud Computing”. In TRUST 2010, LNCS
6101, pp. 211–227, 2010, © Springer-Verlag B erlin
Heidelberg 2010.

[7] TCG. [Online]. Available: http://www.trustedcomputin

ggroup.org/

[8] Stefan Berger, Ram´on C ´aceres, Kenneth A.

Goldman, Ronald Perez, Reiner Saile r, Leendert van
Doorn, “vTPM: Virtualizing the Trusted Platform
Module”. In Proc. of USENIX-SS’06, Berkeley, CA,
USA, 2006.

[9] Partha Sen, Pritam Saha, Sunirmal Khatua “A

Distributed Approach towards Trusted Cloud
Computing platform” in 2015 Applications and
Innovations in Mobile Computing (AIMoC)

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 172

IJSER © 2016
http://www.ijser.org

IJSER

